Multilevel Analysis of Factors Affecting School Performance in Third Grade Spanish in Honduras
Keywords:
school performance, multilevel model, frequentist approach, bayesian approachAbstract
In this paper, is made an analysis of school factors that affect performance in spanish third grade in Honduras, using data from Third Comparative and Explanatory Regional Study TERCE 2013, through a model of multilevel regression that allows performing analysis with estimates by levels; by the frequentist and Bayesian approaches. In the frequentist approach several models are made until the final model is obtained, and tests are made to verify the assumptions of homoscedasticity, orthogonality and normality, selecting the best model using AIC, BIC, and Log-Likelihood criterion. In the Bayesian approach, the models are compared using PSIS-LOO and WAIC criterion. Among the main findings, the variables highlighted with the greatest impact are: climate in the school classroom and recreation practices, the variables facilities and basic services of the school, indicate that better school characteristics have a positive and significant effect on student performance in Spanish.
References
Aitkin, M., y Longford, N. (1986). Statistical Modelling Issues in School Effectiveness Studies. Journal of the Royal Statistical Society. Series A (General), Vol. 149, No. 1, 1-43. doi:https://doi.org/10.2307/2981882
Bates, D., Mächler, M., Bolker, B. M., y Walker, S. (2014). Fitting linear mixed-effects models using lme4. Cornell University, Bogotá. doi:https://doi.org/10.18637/jss.v067.i01
Bickel, R. (2007). Multilevel analysis for applied research: it’s just regression!. New York: The Guilford Press.
Bürkner, P.-C. (2017). brms: An R Package for Bayesian Multilevel Models Using Stan. Journal of Statistical Software, August 2017, Volumen 80, Issue 1. doi:https://doi.org/10.18637/jss.v080.i01
Bustamante, A. M. (2015). Dirección escolar exitosa en España. [Tesis doctoral, Universidad Autónoma de Madrid]. https://repositorio.uam.es/handle/10486/666722
Fernández, V. P. (2012). Los modelos multinivel en el análisis de factores de riesgo de sibilancias recurrentes en lactantes. Enfoques frecuentista y bayesiano. [Tesis doctoral, Universidad de Murcia]. https://tesisenred.net/handle/10803/109213
Finch, W. H., Bolin, J., y Kelley, K. (2014). Multilevel Modeling Using R. Boca Ratón, FL 33487-2742: Taylor and Francis Group. doi:https://doi.org/10.1201/9781351062268
Gelman, A., y Pardoe, I. (2012). Bayesian Measures of Explained Variance and Pooling in Multilevel (Hierarchical) Models. Technometrics, 241-251. doi:https://doi.org/10.1198/004017005000000517
Hox, J., Moerbeek, M., y Schoot, R. V. (2018). Multilevel analysis techniques and applications. New York: Taylor & Francis Group. https://lccn.loc.gov/2017013032
Johnson, R., y Wichern, D. (2007). Applied Multivariate Statistical Analysis. Prentice Hall. https://libgen.li/file.php?md5=43c0d654a6ec0d23aa6697c7619daf27
Jurado, J. C. (2013). Análisis multinivel del rendimiento escolar en matemáticas para cuarto grado de Educación Básica Primaria en Colombia. Sociedad y Economía No. 25, 205-236. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1657-63572013000200010
McElreath, R. (2020). Statistical Rethinking A Bayesian Course with Examples in R and Stan. Columbia: Taylor & Francis Group. Obtenido de https://xcelab.net/rm/statistical-rethinking/
Nalborczyk, L., Batailler, C., Loevenbruck, H., Vilain, A., y Bürkner, P. (2019). An Introduction to Bayesian Multilevel Models Using brms: A Case Study of Gender Effects on Vowel Variability in Standard Indonesian. University Grenoble Alpes. Obtenido de https://osf.io/dpzcb/
Secretaría de Educación. (1999). Carta/acuerdo entre la Secretaría de Educación y la UNESCO. Honduras.
Seghouane, A. K., y Amari, S. I. (2007). The AIC Criterion and Symmetrizing the Kullback–Leibler Divergence. IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 1. doi:10.1109/TNN.2006.882813
Stringfield, S., Reynolds, D., Creemers, B., Nesselrodt, P., Schanffer, E., y Teddlie, C. (1994). A model of elementary school effects. Advances in School Effectiveness Research and Practice, 153-187.
Team, R. C. (2020). R: A Language and Environment for Statistical Computing. https://www.R-project.org/
Torrecilla, J. M. (2008). Los modelos multinivel como herramienta para la investigación educativa. Revista Internacional de Investigación en Educación, vol. 1, núm. 1, julio-diciembre, 45-62. http://www.redalyc.org/articulo.oa?id=281021687004
UNESCO. (2000). Situación y tendencias 2000 Evaluación del aprovechamiento escolar. Foro consultivo internacional sobre educación para todos.
UNESCO. (2007). Informe de seguimiento de la educación para todos en el mundo. Paris: Fortemps.
UNESCO. (2016). Tercer estudio comparativo y explicativo: reporte técnico. Oficina regional de educación para América Latina y el Caribe. https://unesdoc.unesco.org/ark:/48223/pf0000247123
Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., y Bürkner, P.-C. (2021). Rank-Normalization, Folding, and Localization: An Improved R^ for Assessing Convergence of MCMC (with Discussion). Bayesian Analysis (2021) 16, Number 2, 667–718. doi:https://doi.org/10.1214/20-BA1221
Velez, E., Schiefelbein, E., y Valenzuela, J. (1994). Factores que Afectan el Rendimiento Académico en la Educación. Revista latinoamericana de Innovaciones Educativas. Argentina, No. 17. https://core.ac.uk/download/pdf/143614621.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Paradigma: Revista de Investigación Educativa

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.