A Structural Equation Model for the Study of Factors Associated with School Performance
Keywords:
structural equations model, principal components, factor analysis, school performanceAbstract
In this paper is made a factorial analysis for the database of Spanish third-grade taken from TERCE 2013 Honduras. This analysis is made by the factor analysis (FA) and structural equation modeling (SEM). It is verified that the sample is valid to carry out FA and meets the assumption of multivariate normality. Exploratory factor analysis is performed to determine the number of factors to use. Additionally, confirmatory factor analysis is used to verify the most relevant fit indices such as CFI, TLI, RMSEA, SRMR which allow for statistical coherence observation. Finally, the structural equation model is carried out, estimation being performed by the maximum likelihood method (MLE) and to validate the model, it was checked for common method variance (CMV) using Harman's single-factor test and the Heterotrait-Monotrait Ratio of Correlations (HTMT) criterion. Regarding the associated factor results, it was observed that not only the characteristics of the institutions influence student performance but also those of the community.
References
Arauz, A. F. (2020). Comparación entre modelos de datos multinivel a través de ecuaciones estructurales con estimación bayesiana y pequeñas varianzas a priori en las cargas factoriales cruzadas. Ciudad Universitaria Rodrigo Facio, Costa Rica. https://www.kerwa.ucr.ac.cr/handle/10669/81822
Campbell, D. T. y Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait–multimethod matrix. Psychological Bulletin, 56, 81–105. https://doi.org/10.1037/h0046016
Cattell, R. B. (1966). The screen test for the number of factors. Multivariate Behavioral Research, 1:2, 245-276. https://doi.org/10.1207/s15327906mbr0102_10
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334. https://doi.org/10.1007/BF02310555
Eichhorn, B. R. (2014). Common Method Variance Techniques. Cleveland State University, Cleveland, OH: SAS Institute Inc, 1-11. https://api.semanticscholar.org/CorpusID:52235268
Escobedo Portillo, M. T., Hernández Gómez, J. A., Ortega, V. E., y Martínez Moreno, G. (2015). Modelos de ecuaciones estructurales: características, fases, construcción, aplicación y resultados. Ciencia & Trabajo, 18(55), 16–22. http://dx.doi.org/10.4067/S0718-24492016000100004
Everitt, B. y Hothorn, T. (2011). An introduction to applied multivariate analysis with R. Springer Science Business Media. http://dx.doi.org/10.1007/978-3-319-14093-3
Fabrigar, L. R. y Wegener, D. T. (2000). Analysis and design for nonexperimental data addressing causal and noncausal hypothesis. Handbook of research methods in social and personality psychology, 412- 450.
Fornell, C., y Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312
Frazier, P. A., Tix, A. P., y Barron, K. E. (2004). Testing moderator and mediator effects in counseling psychology research. Journal of Counseling Psychology, 51(1), 115–134. https://doi.org/10.1037/0022-0167.51.1.115
Guttman, L. (1954). Some necessary conditions for common-factor analysis. Psychometrika, 19(2). https://doi.org/10.1007/BF02289162
Harman, H. (1960). Modern factor analysis. Chicago: University of Chicago Press.
Henseler, J., Ringle, C. M. y Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Revista de la Academia de Ciencias del Marketing, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8
Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrica, 30(2). https://doi.org/10.1007/BF02289447
Johnson, R. A. y Wichern, D. W. (2007). Applied multivariate statistical analysis. Pearson Education.
Jolliffe, I. (2005). Principal component analysis. Encyclopedia of Statistics in Behavioral Science, 3, 1580–1584. http://dx.doi.org/10.1007/978-3-642-04898-2_455
Labraca, J. M. (2021). Modelos de ecuaciones estructurales. España: Universidad de Almería.
Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis. Biometrika, 57(3), 519. https://doi.org/10.1093/biomet/57.3.519
Mulaik, S. A. (2009). Linear causal modeling with structural equations. Chapman & Hall book. https://doi.org/10.1201/9781439800393
Quintana, L. y Mendoza, M. Á. (2016). Luis Quintana. Econometría aplicada usando R. Ciudad Universitaria, Delegación Coyoacán: DGAPA, UNAM.
Richardson, H. A., Simmering, M. J., y Sturman, M. C. (2009). A tale of three perspectives: Examining post hoc statistical techniques for detection and correction of common method variance. Organizational Research Methods, 12(4), 762-800. https://doi.org/10.1177/1094428109332834
Rivas Martínez, L. I. y Cruz Torres, C. A. (2022). Análisis Multinivel de Factores que Afectan el Rendimiento Escolar en Español Tercer Grado en Honduras. Paradigma: Revista De Investigación Educativa, 29(48), 93–119. https://doi.org/10.5377/paradigma.v29i48.15278
Ruiz, M. A., Pardo, A. y Martín, R. S. (2010). Modelo de ecuaciones estructurales. Papeles del Psicólogo, 31(1), 34-45. https://www.redalyc.org/articulo.oa?id=77812441004
Team, R. C. (2020). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.r-project.org/
Tehseen, S., Ramayah, T. y Sajilan, S. (2017). Testing and controlling for common method variance: A review of available methods. Journal of Management Sciences, 4(2), 146-175. https://doi.org/10.20547/jms.2014.1704202
Tone, E. R. (2017). Descripción metodología del modelo de ecuaciones estructurales con el método de estimación de mínimos cuadrados parciales. Universidad Nacional Agraria, La Molina, Lima, Perú. https://hdl.handle.net/20.500.12996/3275
UNESCO. (2007). Informe de seguimiento de la educación para todos en el mundo. Fortemps.
UNESCO. (2013). Factores asociados al aprendizaje en el SERCE . Oficina Regional de Educación Para América Latina y el Caribe.
UNESCO. (2016). Reporte técnico tercer estudio comparativo y explicativo. Oficina Regional de Educación para América Latina y el Caribe. https://unesdoc.unesco.org/ark:/48223/pf0000247123
Wright, S. (1934). The method of path coefficients. The Annals of Mathematical Statistics, 5, 161-215. https://doi.org/10.1214/aoms/1177732676
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Paradigma: Revista de Investigación Educativa

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.